If it's not what You are looking for type in the equation solver your own equation and let us solve it.
y^2+10y-16=0
a = 1; b = 10; c = -16;
Δ = b2-4ac
Δ = 102-4·1·(-16)
Δ = 164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{164}=\sqrt{4*41}=\sqrt{4}*\sqrt{41}=2\sqrt{41}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{41}}{2*1}=\frac{-10-2\sqrt{41}}{2} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{41}}{2*1}=\frac{-10+2\sqrt{41}}{2} $
| 3.6/x=-7.3 | | V=(1/3)3.14r^2×2 | | 5(2x-3)=3x-29 | | (x+138+x+48)2=360 | | 13(x-3)=3(2×1)-1 | | x2-2x-3=1.5 | | 2x^2-25x-15=0 | | F(x)=-x^2+24+180 | | 106=x | | 2x-2x-3=1.5 | | 17x-2(8+3)=0 | | 4^(2x-3)=30 | | 8c=5c | | 21x=52 | | 5x=-2+28 | | 7+0.3w=1.5w+0.0625 | | 8-(3m+1.5)=0 | | 2(2+12)=x(x+6) | | Y=-98+4x | | 563x−8=1 | | 4.55=13y | | 12p-7=2p+3 | | 0.5x+5.3=0.8x-8 | | 2(3x+23)+9x-6+140=360 | | 7p^2-15p=-8 | | -4x+12=64 | | 2+2=2x2 | | x(52-4x)=99 | | 21-2/3x=41 | | 26.8+2.2y=42.661y | | 3x=2+50 | | 7w+8=2w+16 |